Neural Networks

Zhiyao Duan
 Associate Professor of ECE and CS
 University of Rochester

Some figures are copied from the following books

- LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for Engineers and Scientists, Cambridge University Press, 2022.

Biological Motivation

- Human brain: a densely interconnected network
- ~10^11 neurons
- Each neuron connects to $\sim 10^{\wedge} 4$ other neurons
- Two states of neuron activity: excited vs. inhibited
- Neuron switching speed: $\sim 1 \mathrm{kHz}$
- CPU clock frequency: GHz
- Yet many tasks (e.g., face recognition) can be completed within 0.1 s
- This suggests
- Highly parallel processing
- Distributed representations

Biological Analogy

History of Neural Networks

- 1943 - first neural network computing model by McCulloch and Pitts
- 1958 - Perceptron by Rosenblatt
- 1960's - a big wave
- 1969 - Minsky \& Papert's book "Perceptrons"
- 1970's - "winter" of neural networks
- 1975 - Backpropagation algorithm by Werbos
- 1980's - another big wave
- 1990's - overtaken by SVM proposed in 1993 by Vapnik
- 2006 - a fast learning algorithm for training deep belief networks by Hinton
- 2010's - another big wave
- 2018 - Turing Award to Hinton, Bengio \& LeCun
- 2022 - ChatGPT!
- 2024 - Sora!
- Present - continue to transform various domains

Perceptron

Nonlinear Activation Functions

- Step function

$$
\text { output }=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)
$$

- Note: previously we used $\{-1,1\}$ for sign function for perceptron, which is equivalent
- Sigmoid function
output $=\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)=\frac{1}{1+e^{-\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)}}$
- Rectified Linear Unit (ReLU)

$$
\text { output }=\max \left\{0, \boldsymbol{w}^{T} \boldsymbol{x}+b\right\}
$$

Limitations of 1-layer Nets

- Only express linearly separable cases
- For example, they are good as logic operators "AND", "NOT", and "OR"

- Cannot represent "XOR", which is not linearly separable

But, we can combine them!

2-layer Nets

Matrix Notation

$$
\begin{aligned}
& \qquad f(\boldsymbol{x})=\sigma\left(\sum_{j} w_{j}^{(2)} \sigma\left(\sum_{i} w_{i j}^{(1)} x_{i}+b_{j}^{(1)}\right)\right. \\
& \qquad f(\boldsymbol{x})=\sigma\left(\boldsymbol{W}_{2}^{T} \boldsymbol{\sigma}\left(\boldsymbol{W}_{1}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}_{1}\right)+b_{2}\right) \\
& \text { here } \quad \boldsymbol{W}_{1}=\left[w_{i j}^{(1)}\right]_{d \times l_{1}}, \boldsymbol{b}_{1}=\left[b_{j}^{(1)}\right]_{l_{1} \times 1} \\
& \boldsymbol{W}_{2}=\left[w_{j k}^{(2)}\right]_{l_{1} \times l_{2}}, b_{2}=b^{(2)}
\end{aligned}
$$

- What does $\boldsymbol{W}_{1}^{T} \boldsymbol{x}$ compute?
- Inner products between columns of \boldsymbol{W}_{1} and \boldsymbol{x}
- Columns of \boldsymbol{W}_{1} are "receptors" or "filters"

Input
Hidden layer Output layer

- $\boldsymbol{W}_{1}^{T} \boldsymbol{x}$ are their responses to input

3-layer Nets

$f(\boldsymbol{x})=\sigma\left(\sum_{k} w_{k}^{(3)} h_{k}^{(2)}+b^{(3)}\right)=\sigma\left(\sum_{k} w_{k}^{(3)} \sigma\left(\sum_{j} w_{j k}^{(2)} h_{j}^{(1)}+b_{k}^{(2)}\right)+b^{(3)}\right)=\sigma\left(\sum_{k} w_{k}^{(3)} \sigma\left(\sum_{j} w_{j k}^{(2)} \sigma\left(\sum_{i} w_{i j}^{(1)} x_{i}+b_{j}^{(1)}\right)+b_{k}^{(2)}\right)+b^{(3)}\right)$

Matrix Notation

Richer Representations with More Layers

- 1-layer nets (e.g., perceptron) only model linear hyperplanes
- 2-layer nets can approximate any continuous function, given enough hidden nodes
- >=3-layer nets can do so with fewer nodes and weights
- Nonlinear activation is key!
- Multiple layers of linear activations is still linear!

Example Application

(Fig. 6.5 in LWLS, from MNIST dataset)
70,000 grayscale images (28*28) from 10 classes

- One-layer MLP (i.e., logistic regression)
- Input: 28*28=784-d vectors
- Output layer size: 10 nodes
- \#parameters: $784 * 10+10=7,850$
- Two-layer MLP
- Input: $28 * 28=784-d$ vectors
- Hidden layer size: 200 nodes
- Output layer size: 10 nodes
- \#parameters for hidden layer: $784 * 200+200$
- \#parameters for output layer: 200*10+10
- \#Total parameters $=159,010$

Properties of NNs

- Large capacity: able to learn complex relations between input and output
- Support various data formats: continuous, discrete, categorical (needs to be encoded into numeric)
- Robust to some level of noise in training data
- Inference (i.e., making predictions on test examples) is fast
- Data hungry
- Training is slow
- Lack of mathematical analysis and difficult to interpret

How to learn the weights?

- Given training data - input and label pairs $\left\{\boldsymbol{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$
- Update network weights to minimize the difference (error) between $f\left(\boldsymbol{x}^{(i)}\right)$ and $y^{(i)}$
- Calculate derivative of error w.r.t. weights
- Gradient descent to update weights
- Backpropagation algorithm: recursive computation of these gradients
- See derivation on white board

Backpropagation Recap

- Assume we use sigmoid activation and the squared error loss
- We can also use other activations, e.g., ReLU
- We can also use other losses, e.g., cross entropy
- Then the loss on the entire training set is

$$
E(\boldsymbol{\theta})=\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}=\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-f\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)\right)^{2}
$$

where $\boldsymbol{\theta}$ denotes network parameters, i.e., network weights

- We compute gradient $\nabla_{\boldsymbol{\theta}} E(\boldsymbol{\theta})$ (called the true gradient, versus stochastic gradient computed on a subset of data), and then update $\boldsymbol{\theta}$ along the negative gradient direction iteratively
- The computation of $\nabla_{\boldsymbol{\theta}} E(\boldsymbol{\theta})$ is recursive, backward from the last layer to the first layer, leveraging the layer-wise structure of the network
- The computation also requires node outputs at each layer, which are computed in a forward pass

Forward Pass In Matrix Notation

- Start from input $\boldsymbol{X}_{N \times d}=\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \cdots, \boldsymbol{x}^{(N)}\right]^{T}$ corresponding to all N points
- Compute first hidden layer net input \boldsymbol{Z}_{1}

$$
\left[\boldsymbol{Z}_{1}\right]_{N \times l_{1}}=\left[\boldsymbol{X} \boldsymbol{W}_{1}\right]_{N \times l_{1}}+\left[\operatorname{repmat}\left(\boldsymbol{b}_{1}^{T}\right)\right]_{N \times l_{1}}
$$

- Compute first hidden layer output \boldsymbol{H}_{1}

$$
\left[\boldsymbol{H}_{1}\right]_{N \times l_{1}}=\boldsymbol{\sigma}\left(\boldsymbol{Z}_{1}\right)
$$

- Compute second hidden layer net input \boldsymbol{Z}_{2}

$$
\left[\boldsymbol{Z}_{2}\right]_{N \times l_{2}}=\left[\boldsymbol{H}_{1} \boldsymbol{W}_{2}\right]_{N \times l_{2}}+\left[\operatorname{repmat}\left(\boldsymbol{b}_{2}^{T}\right)\right]_{N \times l_{2}}
$$

- Compute second hidden layer output \boldsymbol{H}_{2}

$$
\left[\boldsymbol{H}_{2}\right]_{N \times l_{2}}=\boldsymbol{\sigma}\left(\boldsymbol{Z}_{2}\right)
$$

-
- Compute final output $\hat{\boldsymbol{y}}$, a vector corresponding to all N points

Backward Pass in Matrix Notation

- Mean squared error computed on all data: $E(\boldsymbol{\theta})=\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-\hat{\boldsymbol{y}}^{(i)}\right)^{2}=\frac{1}{2 N}(\boldsymbol{y}-\widehat{\boldsymbol{y}})^{T}(\boldsymbol{y}-\widehat{\boldsymbol{y}})$
- Compute gradients w.r.t. weights in the output layer (the M-th layer)

$$
\begin{gathered}
{\left[\frac{\partial E}{\partial \widehat{\boldsymbol{y}}}\right]_{N \times 1}=\frac{1}{N}(\hat{\boldsymbol{y}}-\boldsymbol{y})} \\
{\left[\sigma^{\prime}\left(\boldsymbol{z}_{M}\right)\right]_{N \times 1}=\widehat{\boldsymbol{y}} \odot(1-\widehat{\boldsymbol{y}})}
\end{gathered}
$$

$$
\left[\frac{\partial E}{\partial \boldsymbol{w}_{M}}\right]_{l_{M-1} \times 1}=\left[\frac{\partial \boldsymbol{z}_{M}}{\partial \boldsymbol{w}_{M}}\right]_{l_{M-1} \times N} \cdot\left[\left[\frac{\partial E}{\partial \hat{\boldsymbol{y}}}\right]_{N \times 1} \odot\left[\sigma^{\prime}\left(\mathbf{z}_{M}\right)\right]_{N \times 1}\right]
$$

$$
\frac{\partial E}{\partial b_{M}}=\left[\frac{\partial \mathbf{z}_{M}}{\partial b_{M}}\right]_{1 \times N} \cdot\left[\left[\frac{\partial E}{\partial \widehat{\boldsymbol{y}}}\right]_{N \times 1} \odot\left[\sigma^{\prime}\left(\mathbf{z}_{M}\right)\right]_{N \times 1}\right]
$$

Backward Pass in Matrix Notation

- Compute gradients w.r.t. weights in the $(m-1)$-th layer recursively

$$
\begin{gathered}
{\left[\frac{\partial E}{\partial \boldsymbol{H}_{m-1}}\right]_{N \times l_{m-1}}=\left[\frac{\partial E}{\partial \boldsymbol{H}_{m}}\right]_{N \times l_{m}} \odot\left[\sigma^{\prime}\left(\boldsymbol{Z}_{m}\right)\right]_{N \times l_{m}} \cdot\left[\boldsymbol{W}_{m}^{T}\right]_{l_{m} \times l_{m-1}}} \\
{\left[\frac{\partial E}{\partial \boldsymbol{W}_{m-1}}\right]_{l_{m-2} \times l_{m-1}}=\left[\boldsymbol{H}_{m-2}^{T}\right]_{l_{m-2} \times N} \cdot\left[\left[\frac{\partial E}{\partial \boldsymbol{H}_{m-1}}\right]_{N \times l_{m-1}} \odot\left[\sigma^{\prime}\left(\boldsymbol{Z}_{m-1}\right)\right]_{N \times l_{m-1}}\right]} \\
{\left[\frac{\partial E}{\partial \boldsymbol{b}_{m-1}}\right]_{l_{m-1} \times 1}=\left[\left[\frac{\partial E}{\partial \boldsymbol{H}_{m-1}}\right]_{N \times l_{m-1}} \odot\left[\sigma^{\prime}\left(\boldsymbol{Z}_{m-1}\right)\right]_{N \times l_{m-1}}\right]^{T} \cdot \mathbf{1}_{N \times 1}}
\end{gathered}
$$

Problems of BP for Deep Networks

- Vanishing gradient problem
- Gradients vanish when they are propagated back to early layers, hence their weights are hard to adjust
- Sigmoid activation \rightarrow ReLU activation
- Many local minima
- Which will trap gradient decent methods
- In practice, local minima are pretty good

Summary

- (Artificial) neural networks are inspired by biological neural networks
- Parallel processing + distributed representation
- Feedforward neural networks use a layer-wise structure
- Full connection between adjacent layers
- Linear mapping + nonlinear activation
- Representation power
- 1-layer NNs are just perceptron or logistic regression
- 2-layer NNs can represent (almost) any continuous function, with sufficient hidden nodes
- >=3-layer NNs can do so with much fewer nodes
- Gradient descent to update network weights using training data
- Backpropagation algorithm to recursively compute gradients
- Vanishing gradient issues for sigmoid activation

