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Biological Motivation

e Human brain: a densely interconnected network
— ~10711 neurons
— Each neuron connects to ~10™4 other neurons
— Two states of neuron activity: excited vs. inhibited

— Neuron switching speed: ~1kHz
e CPU clock frequency: GHz

— Yet many tasks (e.g., face recognition) can be completed within 0.1 s

e This suggests
— Highly parallel processing
— Distributed representations
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Biological Analogy
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History of Neural Networks

1943 — first neural network computing model by McCulloch and Pitts
1958 — Perceptron by Rosenblatt

1960’s — a big wave

1969 — Minsky & Papert’s book “Perceptrons”

1970’s — “winter” of neural networks

1975 — Backpropagation algorithm by Werbos

1980’s — another big wave

1990's — overtaken by SVM proposed in 1993 by Vapnik

2006 — a fast learning algorithm for training deep belief networks by Hinton
2010’s — another big wave

2018 — Turing Award to Hinton, Bengio & LeCun

2022 — ChatGPT!

2024 — Sora!

Present — continue to transform various domains
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Inputs

Perceptron

(%) @ Bias
b

1if > wx +b>0
1=1

0 else

@ fy Binary activation
> (Note that we used +1 before, which is equivalent)
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Nonlinear Activation Functions

e Step function
output = sign(wl'x + b)
— Note: previously we used {-1,1} for sign function for

perceptron, which is equivalent

e Sigmoid function
1

14+ e —(wTx+b)

o Rectified Linear Unit (ReLU)
output = max{0,w! x + b} /
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Limitations of 1-layer Nets

e Only express linearly separable @
cases
— For example, they are good as

logic operators "AND", "NOT",
and "OR"

i AND
0.5 0{1 if > wx +b>0

1=
0 else

e Cannot represent "XOR", which
is not linearly separable

XOR

1if ) wx +b>0
i=1

-
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But, we can combine them!

Yy
X3
Xy
h, h, h,
X, X,
X4 X4 Xy
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Input

2-layer Nets

Hidden layer Output layer

Hidden layer output
can be viewed as
“features” calculated
from the raw input

f(x)

Lj
f) =0 (Z wPh; + b(2)> = > w0 (z wi x; + b}”) e
J J L
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Matrix Notation

Lj

f(x) =0 Z w? o (2 w ¥ + b}”) +p@ | Input Hidden layer Output layer
j i

f(x) =a(Wia(Wix+by)+b,)
where

Wi= [Wi(jl) d><11'b1 - [b'(l)]

W, = [Wj(kZ)]llxlz

- What does Wlx compute?
» Inner products between columns of W; and x
« Columns of W, are “receptors” or “filters”
- WTx are their responses to input
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3-layer Nets
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Matrix Notation

f(x)
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w
f(x) =c(Wio(Wia(Wix + b,)+ b,) + bs3)
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Richer Representations with More Layers

1-layer nets (e.g., perceptron) only model linear hyperplanes

2-layer nets can approximate any continuous function, given
enough hidden nodes

>=3-layer nets can do so with fewer nodes and weights

Nonlinear activation is key!
— Multiple layers of linear activations is still linear!
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Example Application
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(Fig. 6.5 in LWLS, from MNIST dataset)
70,000 grayscale images (28*28) from 10 classes

One-layer MLP (i.e., logistic regression) e Two-layer MLP

— Input: 28*28=784-d vectors -
— Output layer size: 10 nodes -
— #parameters: 784*10+10 = 7,850 —

Input: 28*28=784-d vectors
Hidden layer size: 200 nodes
Output layer size: 10 nodes

#parameters for hidden layer:
784*200+200

#parameters for output layer: 200*10+10
#Total parameters = 159,010
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Properties of NNs

Large capacity: able to learn complex relations between input and output

Support various data formats: continuous, discrete, categorical (needs to be
encoded into numeric)

Robust to some level of noise in training data
Inference (i.e., making predictions on test examples) is fast

Data hungry
Training is slow
Lack of mathematical analysis and difficult to interpret
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How to learn the weights?

e Given training data - input and label pairs {x(i)'y(i)}livﬂ

e Update network weights to minimize the difference (error)
between f(x®) and y®
— Calculate derivative of error w.r.t. weights
— Gradient descent to update weights

— Backpropagation algorithm: recursive computation of these gradients

e See derivation on white board
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Backpropagation Recap

e Assume we use sigmoid activation and the squared error loss
— We can also use other activations, e.g., RelLU
— We can also use other losses, e.qg., cross entropy

e Then the loss on the entire training set is
N N
1 . N 2 1 . . 2
- O _5MD) = — 0 _ (D).
E(6) ZNZ(y 9©) ZNZ(y F(x®;0))
l= 1=

where 0 denotes network parameters, i.e., network weights

e We compute gradient V4E (0) (called the true gradient, versus stochastic gradient computed
on a subset of data), and then update 0 along the negative gradient direction iteratively

e The computation of VoE(0) is recursive, backward from the last layer to the first layer,
leveraging the layer-wise structure of the network

e The computation also requires node outputs at each layer, which are computed in a forward
pass
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Forward Pass In Matrix Notation

Start from input Xyyq = [, 23, ---,x(N)]T corresponding to all N points

Compute first hidden layer net input Z,
1Z1 N, = [XW o]y, + [repmat(bf)]zvle
Compute first hidden layer output H,
[Hl]lel =0o(Z,)

Compute second hidden layer net input Z,
(Z5]nx1, = [HiW 3 ]yxi, + [repmat(h3)]yx,
Compute second hidden layer output H,
|H;|yx1, = 0(Z3)

Compute final output y, a vector corresponding to all N points
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Backward Pass in Matrix Notation

e Mean squared error computed on all data: E(8) = %Z{-"zl(y(i) —y®)* = % - -9)

Compute gradients w.r.t. weights in the output layer (the M-th layer)

[aE] 1 3 )
PPN ==Y —-)y
ay NX1 N

0" (zy)Inx1 = YO — )

oE [aZM] aE]
— = Olo'(zy)]Inx1
[awM Im-1X1 oWy IM-1XN Y Nx1
. 7
Hy 4
OE 0z oE
o = [# : a—A] Olo’(zy)]nx1
M M11xN Y1nxa
1T
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Backward Pass in Matrix Notation

e Compute gradients w.r.t. weights in the (m — 1)-th layer recursively

|

@[U'(zm—1)]lem_1

G[U’(Zm—l)]lem_l Ayx1

[ oF ] [ oE ] Olo" (Z) sy, - (W]
j— — O- .
aI-Im—l NXL, 6Hm Nl mJINXlm mily, Xlm—1
oE ] oE
= [Hz;m—z]lm_ XN [ ]

awm_l Im—2Xlm-1 2 I aHm_l NXlm—1

e N |77

0by -1 -1 X1 OHm—y Nxlym—q
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Problems of BP for Deep Networks

e Vanishing gradient problem

— Gradients vanish when they are propagated back to early
layers, hence their weights are hard to adjust

— Sigmoid activation = RelLU activation

e Many local minima
— Which will trap gradient decent methods
— In practice, local minima are pretty good
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Summary

(Artificial) neural networks are inspired by biological neural networks
— Parallel processing + distributed representation

Feedforward neural networks use a layer-wise structure
— Full connection between adjacent layers
— Linear mapping + nonlinear activation

Representation power

— 1-layer NNs are just perceptron or logistic regression

— 2-layer NNs can represent (almost) any continuous function, with sufficient hidden nodes
— >=3-layer NNs can do so with much fewer nodes

Gradient descent to update network weights using training data

Backpropagation algorithm to recursively compute gradients
— Vanishing gradient issues for sigmoid activation
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