
Neural Networks

Zhiyao Duan

Associate Professor of ECE and CS

University of Rochester

Some figures are copied from the following books
• LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for Engineers

and Scientists, Cambridge University Press, 2022.

Biological Motivation

• Human brain: a densely interconnected network

– ~10^11 neurons

– Each neuron connects to ~10^4 other neurons

– Two states of neuron activity: excited vs. inhibited

– Neuron switching speed: ~1kHz

• CPU clock frequency: GHz

– Yet many tasks (e.g., face recognition) can be completed within 0.1 s

• This suggests

– Highly parallel processing

– Distributed representations

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 2

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

Biological Analogy

3

History of Neural Networks

• 1943 – first neural network computing model by McCulloch and Pitts

• 1958 – Perceptron by Rosenblatt

• 1960’s – a big wave

• 1969 – Minsky & Papert’s book “Perceptrons”

• 1970’s – “winter” of neural networks

• 1975 – Backpropagation algorithm by Werbos

• 1980’s – another big wave

• 1990’s – overtaken by SVM proposed in 1993 by Vapnik

• 2006 – a fast learning algorithm for training deep belief networks by Hinton

• 2010’s – another big wave

• 2018 – Turing Award to Hinton, Bengio & LeCun

• 2022 – ChatGPT!

• 2024 – Sora!

• Present – continue to transform various domains

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 4

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

Perceptron







+

= 
=

 else 0

0 if 1
1

n

i

ii bxw


w1

w3

w2

w4

w5

x1

x2

x3

x4

x5

1

b
In

p
u
ts

Bias

5

Binary activation
(Note that we used ±1 before, which is equivalent)

Nonlinear Activation Functions

• Step function
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙 + 𝑏)

– Note: previously we used {-1,1} for sign function for
perceptron, which is equivalent

• Sigmoid function

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎 𝒘𝑇𝒙 + 𝑏 =
1

1 + 𝑒− 𝒘𝑇𝒙+𝑏

• Rectified Linear Unit (ReLU)
𝑜𝑢𝑡𝑝𝑢𝑡 = max 0,𝒘𝑇𝒙 + 𝑏

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 6

Limitations of 1-layer Nets

• Only express linearly separable
cases

– For example, they are good as
logic operators “AND”, “NOT”,
and “OR”

• Cannot represent “XOR”, which
is not linearly separable

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 7

-0.8

1

0.5

x1

0.5
x2

AND

?

1

?

x1

?
x2

XOR







+

= 
=

 else 0

0 if 1
1

n

i

ii bxw








+

= 
=

 else 0

0 if 1
1

n

i

ii bxw


But, we can combine them!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 8

2-layer Nets

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 9

𝑓 𝒙 = 𝜎 ෍

𝑗

𝑤𝑗
(2)
ℎ𝑗 + 𝑏 2 = 𝜎 ෍

𝑗

𝑤𝑗
(2)
𝜎 ෍

𝑖

𝑤𝑖𝑗
(1)
𝑥𝑖 + 𝑏𝑗

1
+ 𝑏 2

Input Hidden layer
Hidden layer output
can be viewed as
“features” calculated
from the raw input

Output layer

𝑤𝑖𝑗
(1)

𝑥1

𝑥2

𝑓 𝒙

ℎ1

ℎ2

𝑤𝑗
(2)

1

1

ℎ3

out

𝑏 2𝑏𝑗
1

Matrix Notation

𝑓 𝒙 = 𝜎 ෍

𝑗

𝑤𝑗
(2)
𝜎 ෍

𝑖

𝑤𝑖𝑗
(1)
𝑥𝑖 + 𝑏𝑗

1
+ 𝑏 2

𝑓 𝒙 = 𝜎 𝑾2
𝑇𝝈 𝑾1

𝑻𝒙 + 𝒃1 + 𝑏2

where

𝑾1 = 𝑤𝑖𝑗
1

𝑑×𝑙1
, 𝒃1 = 𝑏𝑗

1

𝑙1×1

𝑾2 = 𝑤𝑗𝑘
2

𝑙1×𝑙2
, 𝑏2 = 𝑏 2

• What does 𝑾1
𝑇𝒙 compute?

• Inner products between columns of 𝑾1 and 𝒙

• Columns of 𝑾1 are “receptors” or “filters”

• 𝑾1
𝑇𝒙 are their responses to input

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 10

𝑤𝑖𝑗
(1)

𝑥1

𝑥2

𝑓 𝒙ℎ1

ℎ2

𝑤𝑗
(2)

1

1

ℎ3

out

𝑏 2𝑏𝑗
1

Input Hidden layer Output layer

3-layer Nets

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 11

𝑓 𝒙 = 𝜎 ෍

𝑘

𝑤𝑘
3
ℎ𝑘
2
+ 𝑏 3 = 𝜎 ෍

𝑘

𝑤𝑘
3
𝜎 ෍

𝑗

𝑤𝑗𝑘
2
ℎ𝑗
(1)

+ 𝑏𝑘
2

+ 𝑏 3 = 𝜎 ෍

𝑘

𝑤𝑘
3
𝜎 ෍

𝑗

𝑤𝑗𝑘
2
𝜎 ෍

𝑖

𝑤𝑖𝑗
1
𝑥𝑖 + 𝑏𝑗

1
+ 𝑏𝑘

2
+ 𝑏 3

Input 1st hidden Output

𝑤𝑖𝑗
(1)

𝑥1

𝑥2

𝑓 𝒙
ℎ2
1

ℎ2
(1)

𝑤𝑗𝑘
(2)

1

1

ℎ3
1

out

𝑏𝑘
2

𝑏𝑗
1

𝑏 3

ℎ1
2

ℎ2
2

1

𝑤𝑘
3

2nd hidden

Matrix Notation

𝑓 𝒙 = 𝜎 ෍

𝑘

𝑤𝑘
3
𝜎 ෍

𝑗

𝑤𝑗𝑘
2
𝜎 ෍

𝑖

𝑤𝑖𝑗
1
𝑥𝑖 + 𝑏𝑗

1
+ 𝑏𝑘

2
+ 𝑏 3

𝑓 𝒙 = 𝜎 𝑾3
𝑻𝝈 𝑾2

𝑇𝝈 𝑾1
𝑻𝒙 + 𝒃1 + 𝒃2 + 𝑏3

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 12

𝑤𝑖𝑗
(1)

𝑥1

𝑥2

𝑓 𝒙
ℎ2
1

ℎ2
(1)

𝑤𝑗𝑘
(2)

1

1

ℎ3
1

out

𝑏𝑘
2

𝑏𝑗
1

𝑏 3

ℎ1
2

ℎ2
2

1

𝑤𝑘
3

Richer Representations with More Layers

• 1-layer nets (e.g., perceptron) only model linear hyperplanes

• 2-layer nets can approximate any continuous function, given
enough hidden nodes

• >=3-layer nets can do so with fewer nodes and weights

• Nonlinear activation is key!

– Multiple layers of linear activations is still linear!

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 13

Example Application

• Two-layer MLP

– Input: 28*28=784-d vectors

– Hidden layer size: 200 nodes

– Output layer size: 10 nodes

– #parameters for hidden layer:
784*200+200

– #parameters for output layer: 200*10+10

– #Total parameters = 159,010

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 14

• One-layer MLP (i.e., logistic regression)

– Input: 28*28=784-d vectors

– Output layer size: 10 nodes

– #parameters: 784*10+10 = 7,850

(Fig. 6.5 in LWLS, from MNIST dataset)
70,000 grayscale images (28*28) from 10 classes

Properties of NNs

• Large capacity: able to learn complex relations between input and output

• Support various data formats: continuous, discrete, categorical (needs to be
encoded into numeric)

• Robust to some level of noise in training data

• Inference (i.e., making predictions on test examples) is fast

• Data hungry

• Training is slow

• Lack of mathematical analysis and difficult to interpret

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 15

How to learn the weights?

• Given training data - input and label pairs 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

• Update network weights to minimize the difference (error)

between 𝑓 𝒙(𝑖) and 𝑦(𝑖)

– Calculate derivative of error w.r.t. weights

– Gradient descent to update weights

– Backpropagation algorithm: recursive computation of these gradients

• See derivation on white board

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 16

Backpropagation Recap

• Assume we use sigmoid activation and the squared error loss

– We can also use other activations, e.g., ReLU

– We can also use other losses, e.g., cross entropy

• Then the loss on the entire training set is

𝐸 𝜽 =
1

2𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − ො𝑦 𝑖 2
=

1

2𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝜽)
2

where 𝜽 denotes network parameters, i.e., network weights

• We compute gradient ∇𝜽𝐸 𝜽 (called the true gradient, versus stochastic gradient computed
on a subset of data), and then update 𝜽 along the negative gradient direction iteratively

• The computation of ∇𝜽𝐸 𝜽 is recursive, backward from the last layer to the first layer,
leveraging the layer-wise structure of the network

• The computation also requires node outputs at each layer, which are computed in a forward
pass

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 17

Forward Pass In Matrix Notation

• Start from input 𝑿𝑁×𝑑 = 𝒙 1 , 𝒙 2 , ⋯ , 𝒙 𝑁 𝑇
corresponding to all 𝑁 points

• Compute first hidden layer net input 𝒁1
𝒁1 𝑁×𝑙1 = 𝑿𝑾1 𝑁×𝑙1 + 𝑟𝑒𝑝𝑚𝑎𝑡 𝒃1

𝑇
𝑁×𝑙1

• Compute first hidden layer output 𝑯1

𝑯1 𝑁×𝑙1 = 𝝈 𝒁1

• Compute second hidden layer net input 𝒁2
𝒁2 𝑁×𝑙2 = 𝑯1𝑾2 𝑁×𝑙2 + 𝑟𝑒𝑝𝑚𝑎𝑡 𝒃2

𝑇
𝑁×𝑙2

• Compute second hidden layer output 𝑯2

𝑯2 𝑁×𝑙2 = 𝝈 𝒁2

• ……

• Compute final output ෝ𝒚, a vector corresponding to all 𝑁 points

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 18

Backward Pass in Matrix Notation

• Mean squared error computed on all data: 𝐸 𝜽 =
1

2𝑁
σ𝑖=1
𝑁 𝑦 𝑖 − ො𝑦 𝑖 2

=
1

2𝑁
𝒚 − ෝ𝒚 𝑇 𝒚 − ෝ𝒚

• Compute gradients w.r.t. weights in the output layer (the 𝑀-th layer)
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

=
1

𝑁
ෝ𝒚 − 𝒚

𝜎′ 𝒛𝑀 𝑁×1 = ෝ𝒚⨀ 1 − ෝ𝒚

𝜕𝐸

𝜕𝒘𝑀 𝑙𝑀−1×1

=
𝜕𝒛𝑀
𝜕𝒘𝑀 𝑙𝑀−1×𝑁

⋅
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

⨀ 𝜎′ 𝒛𝑀 𝑁×1

𝜕𝐸

𝜕𝑏𝑀
=

𝜕𝒛𝑀
𝜕𝑏𝑀 1×𝑁

⋅
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

⨀ 𝜎′ 𝒛𝑀 𝑁×1

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 19

𝑯𝑀−1
𝑇

𝟏𝑇

Backward Pass in Matrix Notation

• Compute gradients w.r.t. weights in the (𝑚 − 1)-th layer recursively

𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

=
𝜕𝐸

𝜕𝑯𝑚 𝑁×𝑙𝑚

⨀ 𝜎′ 𝒁𝑚 𝑁×𝑙𝑚 ⋅ 𝑾𝑚
𝑇

𝑙𝑚×𝑙𝑚−1

𝜕𝐸

𝜕𝑾𝑚−1 𝑙𝑚−2×𝑙𝑚−1

= 𝑯𝑚−2
𝑇

𝑙𝑚−2×𝑁 ⋅
𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

⨀ 𝜎′ 𝒁𝑚−1 𝑁×𝑙𝑚−1

𝜕𝐸

𝜕𝒃𝑚−1 𝑙𝑚−1×1

=
𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

⨀ 𝜎′ 𝒁𝑚−1 𝑁×𝑙𝑚−1

𝑇

⋅ 𝟏𝑁×1

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 20

Problems of BP for Deep Networks

• Vanishing gradient problem

– Gradients vanish when they are propagated back to early
layers, hence their weights are hard to adjust

– Sigmoid activation → ReLU activation

• Many local minima

– Which will trap gradient decent methods

– In practice, local minima are pretty good

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 21

Summary

• (Artificial) neural networks are inspired by biological neural networks

– Parallel processing + distributed representation

• Feedforward neural networks use a layer-wise structure

– Full connection between adjacent layers

– Linear mapping + nonlinear activation

• Representation power

– 1-layer NNs are just perceptron or logistic regression

– 2-layer NNs can represent (almost) any continuous function, with sufficient hidden nodes

– >=3-layer NNs can do so with much fewer nodes

• Gradient descent to update network weights using training data

• Backpropagation algorithm to recursively compute gradients

– Vanishing gradient issues for sigmoid activation

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 22

	Default Section
	Slide 1: Neural Networks
	Slide 2: Biological Motivation
	Slide 3: Biological Analogy
	Slide 4: History of Neural Networks
	Slide 5: Perceptron
	Slide 6: Nonlinear Activation Functions
	Slide 7: Limitations of 1-layer Nets
	Slide 8: But, we can combine them!
	Slide 9: 2-layer Nets
	Slide 10: Matrix Notation
	Slide 11: 3-layer Nets
	Slide 12: Matrix Notation
	Slide 13: Richer Representations with More Layers
	Slide 14: Example Application
	Slide 15: Properties of NNs
	Slide 16: How to learn the weights?
	Slide 17: Backpropagation Recap
	Slide 18: Forward Pass In Matrix Notation
	Slide 19: Backward Pass in Matrix Notation
	Slide 20: Backward Pass in Matrix Notation
	Slide 21: Problems of BP for Deep Networks
	Slide 22: Summary

